Common Reactions to Blood Transfusion

Grand Rounds
October 22, 2018
Nick Raasch
PGY3
The history of the blood transfusion
Richard Lower
1631-1691

- First reliably documented successful transfusion
- Animal-to-animal
- February 1665
Dr. Jean-Baptiste Denys
1643-1704

- First animal to human transfusion
- Using blood of sheep, he transfused 4 patients in 1667
 - 2 survived (transfused small amount of blood)
 - 2 died (transfused multiple times)
Dr. Jean-Baptiste Denys
1643-1704

- Additionally in 1667, transfused the blood from a lamb into a “subject of a harmless form of insanity”
- Had been suggested that the “blood from a gentle lamb may quiet the tempestuous spirit of an agitated person”
- Heated controversy in 1668
- Banned by the royal society and French government
- Condemned by the Vatican in 1670
- Transfusion experimentation fell into obscurity for the next 150 years
James Blundell
Ob/Gyn FTW

- First successful transfusion of human blood following postpartum hemorrhage
- Used blood from patient’s husband
 - 4oz total
- Experiments continued through mid 1800’s, culminating with whole blood transfusion for hemophilia
The discovery of blood types

- Discovered by Dr. Karl Landsteiner in 1901
 - A, B, O
 - First to discover immune response and hemolysis when incompatible blood types are mixed
 - Allowed for identification of blood type and safer transfusion
 - Was awarded Nobel prize in physiology and medicine in 1930
- George Washington Crile, Jan Jansky, Dr. William Stewart Halsted all credited with additional discoveries leading to the modern process of blood transfusions.
So what’s the problem?
Adverse immune mediated reactions

- Different blood types result in different circulating antibodies in serum
- Mixing of incompatible blood types results in severe or possibly fatal immune mediated reaction
- The indirect coombs test identifies antibodies present in recipient serum that could potentially react with donor blood
 - Step 1: Washed RBCs incubated with known human serum → antibodies in serum bind to antigens on RBCs
 - Step 2: Washed RBCs incubated with antihuman globulin
 - If antibodies bound to surface antigen in step 1, RBCs will agglutinate, resulting in positive Coombs test
Adverse immune mediated reactions
So who gets what?

<table>
<thead>
<tr>
<th>Blood Type</th>
<th>Donate Blood To</th>
<th>Receive Blood From</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>A+ AB+</td>
<td>A+ A- O+ O-</td>
</tr>
<tr>
<td>O+</td>
<td>O+ A+ B+ AB+</td>
<td>O+ O-</td>
</tr>
<tr>
<td>B+</td>
<td>B+ AB+</td>
<td>B+ B- O+ O-</td>
</tr>
<tr>
<td>AB+</td>
<td>AB+</td>
<td>Everyone</td>
</tr>
<tr>
<td>A-</td>
<td>A+ A- AB+ AB-</td>
<td>A- O-</td>
</tr>
<tr>
<td>O-</td>
<td>Everyone</td>
<td>O-</td>
</tr>
<tr>
<td>B-</td>
<td>B+ B- AB+ AB-</td>
<td>B- O-</td>
</tr>
<tr>
<td>AB-</td>
<td>AB+ AB-</td>
<td>AB- A- B- O-</td>
</tr>
</tbody>
</table>
Many types of transfusion reactions

- **Most common reactions**
 - Febrile non-hemolytic reactions
 - Chill-rigor reactions

- **Most serious reactions**
 - Transfusion-associated circulatory overload (TACO)
 - Transfusion-associated acute lung injury (TRALI)
Common Reactions
Febrile non-hemolytic reactions

- **Potential causes**
 - Antibodies against WBC HLA in otherwise compatible donor blood
 - Cytokines released from WBC in stored platelet concentrates

- **Clinical presentation**
 - Temperature increase greater than or equal to 1 degree C
 - Chills
 - Headache
 - Back pain
 - Fevers and chills are also associated with more severe hemolytic reactions, so caution advised if these symptoms develop
 - Most often successfully treated with tylenol/benadryl
 - Future transfusion should be pretreated with tylenol
 - If multiple transfusion reactions occur, leukoreduced blood products should be used.
Allergic reactions

- Commonly caused by unknown component in donor plasma or potentially antibodies from allergic donor
- Mild urticaria, edema, dizziness, headache with associated fever
 - Occasionally dyspnea, wheezing, incontinence; indicating generalized smooth muscle spasm
 - Anaphylaxis possible, more likely in IgA-deficient recipient
- Pretreatment protocol for patients with history of allergic reactions
 - 50mg PO/IV benadryl prior to transfusion
Treatment for an allergic reaction

- **STOP TRANSFUSION**
 - **Mild allergic reaction (urticaria/itching)**
 - Treat with 50mg IV/PO benadryl
 - If symptoms resolve, transfusion can be continued
 - **Moderate allergic reaction (generalized urticaria/bronchospasm)**
 - IV hydrocortisone 100-200mg
 - Do not continue transfusion
 - **Severe allergic reaction (anaphylaxis)**
 - Above treatments along with epinephrine and investigation from blood bank
Severe Reactions
Transfusion Associated Circulatory Overload

- Form of pulmonary edema caused by volume excess and circulatory overload
 - Directly related to amount of blood product transfused, therefore, more likely to occur with FFP than with cryoprecipitate
 - OR for TACO
 - 2-4 units; OR 2.0
 - 4-9 units; OR 3.10
 - Greater than 9 units; OR 3.55
- More common in patient that receive high volume of products over short period of time, or those with underlying cardiovascular or renal disease
- Less common than urticaria and nonhemolytic febrile transfusion reactions, more common than anaphylaxis, TRALI, and AHTR
Transfusion Associated Circulatory Overload

- **Common signs/symptoms**
 - All patients with respiratory distress or hypertension within 6 hours of receiving transfusion
 - Symptoms: Dyspnea or orthopnea, especially in the setting of positive fluid balance
 - Patient commonly report headache, and seizures have been reported
 - Signs: hypoxia, hypertension, tachycardia, wide pulse pressure, JVD, S3, pulmonary rales/wheezing

- **Evaluation**
 - R/o PE, cardiomyopathy, valvular disease and arrhythmia

- **Treatment**
 - O2 supplementation
 - Diuresis
 - Ventilatory support
 - Communication with blood bank regarding treatment options
Transfusion Associated Circulatory Overload

- 2 main strategies for prevention
 - Following appropriate transfusion threshold
 - Transfusing appropriate number of units
 - Transfuse 1 unit and waiting to evaluate patient response prior to adding additional units in a patient not actively bleeding
 - Limit of 2 transfusions/day in patients not actively bleeding
 - Avoid overly rapid transfusion, reduce total volume of transfusion products
 - Transfusion center may be able to reduce the volume by spinning down RBC and removing preservatives immediately prior to transfusion
 - Diuresis
 - Typically pre-transfusion, but can also be given during and after transfusion.
Transfusion Related Acute Lung Injury

- Rare, but potentially fatal complication of blood product transfusion
- Definition: new acute lung injury/ARDS occurring during or within 6 hours of transfusion of blood products
 - Historically, plasma concentrates and apheresis platelet concentrates were most likely to cause TRALI reaction
 - 1/5000 units of transfused blood products
 - True incidence unknown
- Leading cause of transfusion related mortality in the US
 - Mortality ranges from 5-58% depending on patient population
Transfusion Related Acute Lung Injury

- Pathogenesis - 2 hit theory
- Neutrophil sequestration and priming in the lung microvasculature
 - Programs neutrophils to respond to otherwise weak or innocuous stimulant
- Neutrophil activation
 - Activation causes release of cytokines and other cytotoxic substances that damage pulmonary capillary endothelium -> inflammatory pulmonary edema
 - Antibodies in blood component against recipient antigen (immune TRALI)
 - Bioactive lipids (BRM) able to active neutrophils (non-immune TRALI)
Transfusion Related Acute Lung Injury

- Clinical presentation
 - Hypoxemia
 - Pulmonary infiltrates on CXR (normal cardiac silhouette)
 - Pink, frothy sputum
 - Fever
 - Hypotension
 - Cyanosis

- Occurs during, or within 6 hours of transfusion
 - Symptoms commonly begin within the first 1-2 hours

- Occasionally, transient drop in neutrophil count can be seen
 - Sequestration in lungs
Diagnostic criteria for transfusion-related acute lung injury (TRALI) and possible TRALI

<table>
<thead>
<tr>
<th>Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS)</th>
<th>TRALI</th>
<th>Possible TRALI</th>
</tr>
</thead>
<tbody>
<tr>
<td>■ Acute onset (during or within six hours of transfusion)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>■ Hypoxemia*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>■ Bilateral infiltrates on frontal chest radiograph</td>
<td></td>
<td></td>
</tr>
<tr>
<td>■ No evidence of circulatory overload/left atrial hypertension</td>
<td></td>
<td></td>
</tr>
<tr>
<td>■ No pre-existing ALI/ARDS before transfusion</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **ALI/ARDS risk factor** at time of transfusion

 - Must be **absent**
 - Must be **present**

Same as for TRALI
Transfusion Related Acute Lung Injury

Diagnosis:
- When suspected, evaluate patient condition and vital signs
- Determine the extent of hypoxemia
 - Pulse ox vs ABG
- Stat CXR
- Rule out other potential causes of acute decompensation
Transfusion Related Acute Lung Injury

- Treatment
 - STOP transfusion
 - Immediately report to blood bank
 - Blood bank initiates transfusion reaction workup, including CBC, bilirubin, haptoglobin, Coombs, BNP, N-terminal-pro-BNP, HLA antigen typing.
 - Blood bank compiles list of blood products transfused during last 6 hours and reports to blood supplier
 - Blood supplier recalls products from those donors and performs additional testing
 - Correction of hypoxemia
 - Occasionally CPAP or Bi-PAP will suffice, but 70-80% of patients require ET tube with ventilation
Transfusion Related Acute Lung Injury

- **Hemodynamic support**
 - Often present with hypovolemia and hypotension
 - Goal is to maintain adequate end-organ perfusion
 - Achieved with IVF and vasoactive agents
 - Patient with sustained hypoxemia and stable vital signs, diuretics may be indicated

- **Steroid**
 - IV steroids extensively studied in the setting of ARDS with mixed results
 - Efficacy not well established in the setting of TRALI
 - If administered after lung injury established (typically 14 days since onset), may cause harm

- **Investigational strategies**
 - None are approved, but include treatment with HMG-CoA reductase inhibitors, aspirin, alternative blood products
Transfusion Related Acute Lung Injury

● Prognosis
 ○ Hypoxemia typically resolves in 24-48 hours
 ○ Majority of patient will require ICU admission and ventilatory support
 ○ Mortality rate varies greatly depending on which patient population is studied

● Prevention
 ○ Adhering to guidelines for blood product transfusion, especially plasma
 ○ Identifying donors previously implicated in TRALI reactions
 ○ Selecting donors less likely to be alloimmunized to leukocytes
 ○ Testing for anti-HLA antibodies
Take away points

● No transfusion should be considered benign procedure
 ○ All transfusion carries risk that ranges from itching/hives to death

● It is important to counsel patient on risks
 ○ It is a procedure, it needs a consent
 ○ Benefits need to outweigh risks

● All of these potential causes need rapid assessment from a physician
 ○ Once a reaction occurs, patients often decompensate rapidly
 ○ This should not be triaged via phone if at all possible
 ○ Patients need frequent reassessment

● Ask for back up
 ○ There are lots of smart doctors in this hospital, use them to your advantage
 ○ Dr. Palko